

TOBACCO HEATING SYSTEM VS. COMBUSTIBLE CIGARETTES: CAN LUNG FUNCTION PARAMETERS BE IMPROVED?

Francesco Sergio, MD 30th May 2019

www.pmiscience.com

This presentation has been prepared for the purpose of participation in the 2nd Scientific Summit on Tobacco Harm Reduction. It only includes information of a scientific nature and does not have any commercial purpose.

LUNGS: FROM BENCH TO BEDSIDE

International Journal of COPD

open Access Full Text Article

Oxidative stress and free radicals in COPD – implications and relevance for treatment ^{Wolfgang Domej¹}

> TASK FORCE REPORT ERS/ATS GUIDELINES

Dovepress

REVIEW

Global Initiative for Chronic Obstructive L ung Disease

GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2018 REPORT

Review Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms

Adam John Anthony McGuinness * and Elizabeth Sapey

Prevention of COPD exacerbations: a European Respiratory Society/ American Thoracic Society guideline

Jadwiga A. Wedzicha (ERS co-chair)¹, Peter M.A. Calverley², Richard K. Albert³, Antonio Anzueto⁴, Gerard J. Criner⁵, John R. Hurst⁶, Marc Miravitlles ⁷, Alberto Papi ⁸, Klaus F. Rabe⁹, David Rigau¹⁰, Pawel Sliwinski¹¹, Thomy Tonia¹², Jørgen Vestbo¹³, Kevin C. Wilson¹⁴ and Jerry A. Krishnan (ATS co-chair)¹⁵

LUNGS: A HIGH-OXYGEN ENVIRONMENT

- The lungs are constantly in a **high-oxygen environment** due to their high blood supply and large surface area.
- The lung epithelium is also constantly exposed to oxidants generated endogenously during respiration from mitochondrial electron transport and activated inflammatory cells that influx into the lungs, and exogenously from cigarette smoke and air pollutants, such as ozone, nitrogen dioxide, and combustion particulates, as a result of its exposure to the environment.

DEVELOPMENT OF COPD DRIVEN BY OXIDATIVE STRESS MECHANISM

THE IMPACT OF SMOKING CESSATION

Occasional Review

The natural history of chronic airflow obstruction

CHARLES FLETCHER, RICHARD PETO British Medical Journal, 1977, 1, 1645-1648

5

THE IMPACT OF SMOKING CESSATION

International Journal of COPD

Open Access Full Text Article

Lung function decline in COPD

Claudio Tantucci

Conclusion

- The faster progression of functional impairment in COPD occurs early and it particularly occurs in GOLD stage II.
- It is essential to make efforts for an early (spirometric) detection of COPD, based on risk factors rather than symptoms.

Years

THE IMPACT OF SMOKING CESSATION

International Journal of COPD

Dovepress

open access to scientific and medical research

Open Access Full Text Article

ORIGINAL RESEARCH

Smoking cessation affects the natural history of COPD

Jiu-Wu Bai¹

Figure I Kaplan–Meier survival curves for COPD patients in the quittingsmoking group (n=92; 40 deaths) and continuing-smoking group (n=112; 73 deaths).

Bai JW, et al. Int Journal COPD 2017:12 3323-3328

WHAT IS THE OBJECTIVE OF TOBACCO HARM REDUCTION?

- Smoking is addictive and causes a number of serious diseases
- Worldwide, it is estimated that more than 1 billion people will continue to smoke in the foreseeable future*
- Offering smoke-free alternatives to adult smokers is a sensible, complementary addition to existing tobacco control strategies

 Individual risk reduction
 Individual switching
 Individual switching

 Successful harm reduction requires that current adult smokers be offered a range of satisfactory Reduced-Risk Products they can fully switch to, should they decide not to quit.

> * http://www.who.int/tobacco/publications/surveillance/reportontrendstobaccosmoking/en/index4.html Figure adapted from Clive Bates presentation to E-Cigarette Summit (19 Nov 2013) Note: Reduced Risk Products ("RRPs") is the term PMI uses to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switched to these products versus continued smoking.

1,000,000,0

...............

ELIMINATION OF TOBACCO COMBUSTION IS KEY

AS THE TEMPERATURE OF TOBACCO INCREASES, THE LEVELS OF HARMFUL CHEMICALS FORMED INCREASES

Temperature (°C)

Baker RR. High Temp Sci, 1975;7:236-247. Coloration by PMI.

1.

2. McGrath TE, et al. Food and Chemical Toxicology, 2007; 45:1039-1050

PMI'S REDUCE RISK PRODUCTS (RRPs) SCIENTIFIC ASSESSMENT APPROACH

Assessment Framework

Post-Market Studies and Surveillance **Consumer Perception and Behavior** Assessment **Clinical Trials** Systems Toxicology Assessment **Standard Toxicology Assessment Aerosol Chemistry and Physics**

> Product Design and Control Principles

Smith MR, et al. Regulatory Toxicology and Pharmacology 2016; 81:S17eS26

THS: ABSENCE OF COMBUSTION

REDUCTIONS OF TOXICANTS BY DISEASE CATEGORY

https://www.fda.gov/tobacco-products/rules-regulations-and-guidance/harmful-and-HILIP MORRIS INTERNATIONAL potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-established-list Under the Health Canada's Intense Smoking Regime. Excludes Nicotine. Schaller JP et al. Regul Toxicol Pharmacol. 2016; 81:S27-S47.

THS: NO CARBON-BASED SOLID PARTICLES EMISSION

Scanning Electron Microscopy images of the collected smoke/aerosol after passing through a thermodenuder set at 300° C to remove the volatile portion / collected material characterized by Electron Diffusive X-ray.

NANOPARTICLES DEPOSIT IN THE LUNG

Cigarette Smoke

Carbon-based nanoparticles 6x10¹¹ particles ~= 0.7 mg*

Lung Deposition after 6 months

THS Aerosol No solid particles

Cigarette smoke (600 mg/m³ TPM)

Corresponding concentration of THS aerosol

Apoe-/- mice exposed for 6 months, 3h/day and 5days/week

Pratte et al. Hum. Exp. Toxicol, 2017; 36:1115-1120. Phillips B, et al. Toxicological Sciences, 2016 149: 411–432

PRECLINICAL EXPOSURE DATA AVAILABLE

OXFORD

Log2Ratio		3R4F					THS2.2				Cessation*		Switch			
2 10	1	2	3	6	8	1	2	3	6	8	3	6	8	3	6	8
Apo A I	1	_	*		*											
CD40	*	*	*	*	*						*					
CD40 L	*	•	•	•							*	*		*		
CRP Mouse	*	*	*	*	*											
EGF Mouse	*	*	*	*	*						*			*		
Eotaxin	*	*	*	*	*						*			*		
Factor VII	*	*	*	*												
FGF 9	*	*	*	*	*											
FGF basic	*	*	*	*	*											
Fibrinogen					*											
GCP 2 Mouse	*	*	*	*	*			Ļ								
GH					*											
GM CSF	*	*	*	*	*						*			*	*	
Haptoglobin			*		*											
IFN gamma		*														
laA	*	*	*	*	*						*	*	*	*	*	*
IL 1 alpha	*	*	*	*	*						*			*		
II 1 beta	*	*	*	*	*						*			*		
	*	*	*	*	*											
1 7	*	*														
10	*	*	*	*	*											
	*	*														
12:70		*									<u> </u>					
	*	*	*	*	*						*			*		
L_10				*	*											
nsulin			•				+									
P_10	-	-	-													
KC_GRO				*												
Leptin																
			-					+								
Lymphotactin	-	-	-	-	-											
M_CSF_1								+			*			*		
MCP_1											*					
MCP_3											*	*				
MCP_5	*	*	*	*	*									*		
MDC	*	*	*	*	*			Ļ			*			*		*
MIP_1_alpha	*	*	*	*	*						*			*		
MIP_1_beta	•										*			*		
MIP_1_gamma	*	•	•	*	*						*			*		*
MIP_2	*	*	*	*	*			Ļ								
MIP_3_beta	*	*	*	*	*						*			*		*
MMP_9	*			*							*	*		*		
MPO	*	*	•	•	*						*	*		*	*	
Myoglobin		Ļ	*											*		
OSM	*	*			*											
PAL 1	*	*	*	*	*					*	*			*		
Resistin										*			*			
SAP		*	*	*	*											
SCF	*	*	*	*	*											
TIMP 1 Mouse	*	*	*	*	*						*			*		
TNF alpha	*	*														
	*	*	*	*	*			Ļ			*	*		*		
											*			*	*	*
CAM 1	*															
VCAM_1	*	*	*	*	*						*			*		

SOT Society of Toxicology www.toxsci.oxfordjournals.org TOXICOLOGICAL SCIENCES, 149(2), 2016, 411-432

doi: 10.1093/toxsci/kfv243 Advance Access Publication Date: November 25, 2015 Research Article

An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe^{-/-} Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes

Blaine Phillips,* Emilija Veljkovic,† Stéphanie Boué,† Walter K. Schlage,‡

Inflammatory mediators in BALF. Cell-free BALF supernatants were analyzed using a multiplexed bead array. Ratio is given as median of treated mice over median of sham-exposed mice at the same time-point (truncated scale).

Only analytes with statistically significant differences compared with sham under at least one condition are shown.

Phillips B, et al. Toxicological Sciences, 2016 149: 411-432

PRECLINICAL EXPOSURE DATA AVAILABLE

TOXICOLOGICAL SCIENCES, 149(2), 2016, 411-432

doi: 10.1093/toxsci/kfv243 Advance Access Publication Date: November 25, 2015 Research Article

An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe^{-/-} Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes

Blaine Phillips,* Emilija Veljkovic,† Stéphanie Boué,† Walter K. Schlage,‡

Phillips B, et al. Toxicological Sciences, 2016 149: 411-432

PRECLINICAL EXPOSURE DATA AVAILABLE

Sham Reference cigarette THS 2.2 Cessation Switch

Morphometric analysis indicates CS-induced emphysema

Emphysema assessment by morphometry and histopathological evaluation of lung sections. D, Semiquantitative histopathological scoring.

Phillips B, et al. Toxicological Sciences, 2016 149: 411–432

REDUCED EXPOSURE TO HPHCs WITH THS USE IN HEALTHY HUMAN SUBJECTS

SCIENCE

PHILIP MORRIS INTERNATIONAL

EXPOSURE RESPONSE STUDY ERS-09 STUDY DESIGN

Smoking Cessation Response Study

EXPOSURE RESPONSE STUDY ERS-09 PRIMARY OBJECTIVE AND CO-PRIMARY ENDPOINTS

Assess the changes across a set of the "8 co-primary clinical risk endpoints (CRE)" in smokers who switch from smoking cigarettes to using THS (*IQOS*) as compared with those continuing to smoke cigarettes for six months

MAIN ANALYSIS POPULATION

HILP MORRIS INTERNATION

- Randomized product use
- ≥ 70% THS use (*)
- Randomized product use
- 1% ≤ THS use < 70% over the period or THS-use and CC-use do not apply ≥ 50% of the days
- Randomized product use
- < 1% THS use (*)

* Over the whole analysis period and daily on at least 50% of the days period

ERS-09: PRIMARY ANALYSIS RESULT COMPARISON WITH SMOKING

				1-sided						
	Type of Change	Observed Change*	Halperin-Rüger Adjusted Cl	<i>p</i> -value (0.0156)	Statistical Significance					
HDL-C	Difference	3.09 mg/dL	1.10, 5.09	< 0.001	\checkmark					
WBC Count	Difference	-0.420 GI/L	-0.717, -0.123	0.001	\checkmark					
sICAM-1	% Reduction	2.86%	-0.426, 6.04	0.030						
11-DTX-B2	% Reduction	4.74%	-7.50, 15.6	0.193						
8-epi-PGF _{2a}	% Reduction	6.80%	-0.216, 13.3	0.018						
COHb	% Reduction	32.2%	24.5, 39.0	< 0.001	\checkmark					
FEV ₁ %pred	Difference	1.28%pred	0.145, 2.42	0.008	\checkmark					
Total NNAL	% Reduction	43.5 %	33.7, 51.9	< 0.001	\checkmark					
* Observed change presented as LS Mean Difference / Relative Reduction										

5 of 8 CREs were statistically significant compared with continued smoking

POTENTIAL CONSEQUENCES OF SWITCHING TO THS ON OXIDATIVE STRESS AND COPD

CONCLUSIONS

- Smoking remains a challenge for the prevention of respiratory diseases and the best option for every smoker is to quit.
- Tobacco Harm Reduction, i.e. offering smoke-free alternatives to adult smokers, is a sensible, complementary addition to existing tobacco control strategies.
- Although addictive and not risk free, scientific data on smoke-free products provide clear evidence of their potential for harm reduction.
- The totality of the scientific evidence on THS demonstrates that switching completely to THS presents less risk of harm than continuing to smoke.

THANKS FOR YOR ATTENTION

In case of further questions: francesco.sergio@pmi.com

www.pmiscience.com